Localization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer.
نویسندگان
چکیده
The Saccharomyces cerevisiae GDP-mannose transporter (GMT) encoded by the essential gene VRG4/VIG4 is a member of the nucleotide-sugar transporter family in the Golgi apparatus. We examined GMT in the secretory mutant cells to investigate the mechanism of its localization in the Golgi. At the nonpermissive temperature, most GMT was found in the endoplasmic reticulum of sec23ts cells, which have defective COPII, and in the vacuole of sec21ts cells, which have defective COPI. The C-terminal hydrophilic peptide of GMT that is exposed to the cytosol binds to Ret2p, a subunit of the COPI coat. Mutant peptide derivatives that have lost a cluster of lysine in the vicinity of the transmembrane domain had reduced binding activity to Ret2p and the GMT with this sequence was delivered to the vacuole. Our results indicate that GMT escapes from delivery to the vacuole by recycling to the endoplasmic reticulum and retrieval requires the lysine-rich C-terminal tail that can bind to the COPI coat.
منابع مشابه
p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway.
A novel type I transmembrane protein of COPI-coated vesicles, p23, has been demonstrated to be localized mainly to the Golgi complex. This protein and p24, another member of the p24 family, have been shown to bind coatomer via their short cytoplasmic tails. Here we demonstrate that p23 continuously cycles through the early secretory pathway. The cytoplasmic tail of p23 is shown to act as a func...
متن کاملRer1p, a Retrieval Receptor for Endoplasmic Reticulum Membrane Proteins, Is Dynamically Localized to the Golgi Apparatus by Coatomer
Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or del...
متن کاملThe cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein.
Like other coronaviruses, severe acute respiratory syndrome coronavirus (SARS CoV) assembles at and buds into the lumen of the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). Accumulation of the viral envelope proteins at this compartment is a prerequisite for virus assembly. Previously, we reported the identification of a dibasic motif (KxHxx) in the cytoplasmic tail of the ...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملThe First Transmembrane Domain of Lipid Phosphatase SAC1 Promotes Golgi Localization
The lipid phosphatase Sac1 cycles between endoplasmic reticulum and cisternal Golgi compartments. In proliferating mammalian cells, a canonical dilysine motif at the C-terminus of Sac1 is required for coatomer complex-I (COP-I)-binding and continuous retrieval to the ER. Starvation triggers accumulation of Sac1 at the Golgi. The mechanism responsible for Golgi retention of Sac1 is unknown. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 117 Pt 23 شماره
صفحات -
تاریخ انتشار 2004